Шторы

Какие материалы используют в конструкции самолетов. Летающие металлы. Основные виды и характеристики

Современные пассажирские и грузовые перевозки просто невозможно представить без самолетов. А ведь за комфортностью и мобильностью этих «железных птиц» стоят десятилетия разработок и тысячи неудачных попыток. Проектированием самолетов и их строительством занимаются лучшие умы авиастроения. Цена ошибки на этом поприще может быть слишком большой. Сегодня мы с вами немного окунемся в мир авиастроения и узнаем, из каких элементов состоит конструкция самолета.

Общая характеристика

В классическом варианте самолет представляет собой планер (фюзеляж, крылья, хвостовое оперение, мотогондолы), оснащенный силовой установкой, шасси и системами управления. Кроме того, неотъемлемой частью современных самолетов является авионика (авиационная электроника), призванная контролировать все органы и системы воздушного судна и в значительной степени упрощать участь пилотов.

Бывают и другие конструктивные схемы, однако они встречаются гораздо реже и, как правило, в военном авиастроении. Так, к примеру, бомбардировщик В-2 сконструирован по схеме «летающее крыло». А яркий представитель самолетостроения в России - истребитель Миг-29 - выполнен по «несущей схеме». В ней понятие «фюзеляж» заменено на «корпус».

В зависимости от назначения, самолеты делятся на две крупные группы: гражданские и военные. Гражданские модели подразделяются на пассажирские, грузовые, учебные и машины специального использования.

Пассажирские версии отличаются тем, что большую часть их фюзеляжа занимает специально оборудованный салон. Внешне их можно узнать по большому количеству иллюминаторов. Пассажирские воздушные суда подразделяются на: местные (летают на дистанции менее 2 тыс. км); средние (2-4 тыс. км); (дальние 4-9 тыс. км); и межконтинентальные (более 11 тыс. км).

Грузовые воздушные суда бывают: легкими (до 10 т груза), средними (10-40 т груза) и тяжелыми (более 40 т груза).

Самолеты специального назначения могут быть: санитарными, сельскохозяйственными, разведывательными, противопожарными и предназначенными для аэрофотосъемки.

Учебные модели, соответственно, необходимы для обучения начинающих пилотов. В их конструкции могут отсутствовать вспомогательные элементы, такие как кресла пассажирского салона и прочее. То же самое касается и опытных версий, которые используются при испытаниях самолетов новой модели.

Военные самолеты, в отличие от гражданских, не имеют комфортного салона и иллюминаторов. Все пространство фюзеляжа в них занято системами вооружения, оборудованием для разведки, системами связи и прочими агрегатами. Боевые самолеты подразделяются на: истребители, бомбардировщики, штурмовики, разведчики, транспортные, а также всяческие машин специального назначения.

Фюзеляж

Фюзеляж воздушного судна является основной частью, выполняющей несущую функцию. Именно на него крепятся все элементы конструкции самолета. Снаружи это: крылья с мотогондолами, оперение и шасси, а изнутри - кабина управления, технические помещения и коммуникации, а также грузовой или пассажирский отсек, в зависимости от принадлежности судна. Каркас фюзеляжа собирается из продольных (лонжероны и стрингеры) и поперечных (шпангоуты) элементов, которые впоследствии обшиваются металлическими листами. В легких самолетах вместо металла используется фанера или пластик.

Пассажирские машины могут быть узко- и широкофюзеляжными. В первом случае диаметр поперечного сечения корпуса составляет в среднем 2-3 метра, а во втором - от шести метров. Широкофюзеляжные самолеты имеют, как правило, две палубы: верхнюю - для пассажиров, и нижнюю - для багажа.

При проектировании фюзеляжа особое внимание уделяют прочностным характеристикам и весу конструкции. В этой связи имеют место такие меры:

  1. Форма самолета проектируется таким образом, чтобы подъемная сила была максимальной, а лобовое сопротивление воздушным массам - минимальным. Объем и габариты машины должны идеально соотноситься друг с другом.
  2. Для увеличения полезного объема корпуса, при проектировании предусматривается максимально плотная компоновка обшивки и несущих элементов фюзеляжа самолета.
  3. Крепления силовой установки, взлетно-посадочных элементов и крыловых сегментов стараются сделать максимально простыми и надежными.
  4. Места размещения пассажиров и крепления грузов или расходных материалов проектируются таким образом, чтобы в разных условиях эксплуатации самолета его баланс оставался в пределах допустимого отклонения.
  5. Места для размещения экипажа должны обеспечивать комфортное управление воздушным судном, доступ к главным приборам навигации и максимально эффективное управление в случае непредвиденных ситуаций.
  6. Компоновка самолета выполняется таким образом, чтобы при его обслуживании мастера имели возможность беспрепятственно продиагностировать необходимые узлы и агрегаты самолета и при необходимост, провести их ремонт.

Фюзеляж самолета должен быть достаточно прочным, чтобы противостоять нагрузкам, возникающим в разных полетных условиях, а именно:

  1. Нагрузкам, возникающим в точках крепления основных элементов корпуса (крылья, оперение, шасси) во время взлета и приземления.
  2. Аэродинамическим нагрузкам, возникающим во время полета, с учетом работы агрегатов, инерционных сил и функционирования вспомогательного оборудования.
  3. Нагрузкам, связанным с перепадами давления, которые возникают при летных перегрузках в герметически ограниченных отсеках самолета.

Крыло

Важным конструктивным элементом любого самолета являются крылья. Они создают подъемную силу, необходимую для полета, и позволяют осуществлять маневрирование. Кроме того, крыло самолета используют для размещения силового агрегата, топливных баков, навесного оборудования и взлетно-посадочных устройств. Правильное соотношение веса, жесткости, прочности, аэродинамики и качества изготовления этого конструктивного элемента обуславливает надлежащие летные и эксплуатационные характеристики самолета.

Крыло самолета состоит из таких частей:

  1. Корпус, который состоит из каркаса (лонжероны, стрингеры и нервюры) и обшивки.
  2. Предкрылки и закрылки, которые обеспечивают взлет и посадку самолета.
  3. Интерцепторы и элероны, с помощью которых пилот может менять направление полета самолета.
  4. Тормозные щитки, служащие для более быстрой остановки самолета в момент посадки.
  5. Пилоны, на которые крепятся силовые установки.

К фюзеляжу крыло крепится через центроплан - элемент, соединяющий правое и левое крыло и частично проходящий через фюзеляж. У низкопланов центроплан располагается в нижней части фюзеляжа, а у высокопланов - в верхней. У боевых машин он может и вовсе отсутствовать.

Во внутренних полостях крыла (у больших судов) обычно устанавливаются баки для топлива. У легких самолетов-истребителей дополнительные топливные баки могут подвешиваться на специальных консольных креплениях.

Конструктивно-силовая схема крыла

Конструктивно-силовая схема крыла должна обеспечивать противодействие силам сдвига, кручения и изгиба, возникающим во время полета. Ее надежность обуславливается использованием прочного каркаса из продольных и поперечных элементов, а также прочной обшивки.

Продольные элементы каркаса крыла представлены лонжеронами и стрингерами. Лонжероны выполняются в виде фермы или монолитной балки. Они размещаются по всему внутреннему объему крыла с определенным интервалом. Лонжероны придают конструкции жесткость и нивелируют воздействие поперечных и сгибающих сил, возникающих на той или иной стадии полета. Стрингеры играют роль компенсатора осевого усилия сжатия и растяжения. Они также нивелируют местные аэродинамические нагрузки и повышают жесткость обшивки.

Поперечные элементы каркаса крыла представлены нервюрами. В данной конструкции они могут выполняться в виде ферм или тонких балок. Нервюры обуславливают профиль крыла и придают его поверхности жесткость, необходимую при распределении нагрузки в момент формирования полетной воздушной подушки. Также они служат для более надежного крепления силовых агрегатов.

Обшивка не только придает крылу необходимую форму, но и обеспечивает максимальную подъемную силу. Наравне с другими элементами каркаса, она увеличивает жесткость конструкции и нивелирует воздействие внешних нагрузок.

Крылья самолетов могут отличаться по конструктивным особенностям и функциональности обшивки. Выделяют два главных типа:

  1. Лонжеронные. Отличаются небольшой толщиной обшивки, которая образует замкнутый контур с ребрами лонжеронов.
  2. Моноблочные. Основное количество внешней нагрузки распределяется по поверхности толстого слоя обшивки, закрепленного набором стрингеров. В таком случае обшивка может быть как монолитной, так и состоять из нескольких слоев.

Говоря о конструкции крыла, стоит отметить, что его стыковка и последующее крепление должны выполняться таким образом, чтобы в конечном итоге обеспечивалась передача и распределение крутящего и изгибающего моментов, которые могут возникнуть в разных режимах эксплуатации самолетов.

Оперение

Оперение самолета позволяет менять траекторию его движения. Оно может быть хвостовым и носовым (используется реже). В большинстве случаев хвостовое оперение представлено вертикальным килем (или же несколькими килями, обычно их два) и горизонтальным стабилизатором, по конструкции напоминающим крыло уменьшенного размера. Благодаря килю регулируется путевая устойчивость самолета, то есть устойчивость по оси движения, а благодаря стабилизатору - продольная (по тангажу). Горизонтальное оперение может устанавливаться на фюзеляж или поверх килей. Киль, в свою очередь, ставится на фюзеляж. Существуют разные вариации компоновки хвостового оперения, но в большинстве случаев она выглядит именно так.

Некоторые военные самолеты дополнительно оснащаются носовым оперением. Это необходимо для обеспечения должной путевой устойчивости на сверхзвуковых скоростях.

Силовые установки

Двигатель является важнейшим элементом в конструкции самолета, ведь без него воздушное судно не сможет даже взлететь. Первые самолеты летали совсем недолго и могли вмещать всего лишь одного пилота. Причина тому проста - маломощные моторы, не позволяющие развить достаточную тяговую силу. Чтобы самолеты научились перевозить сотни пассажиров и неподъемные грузы, конструкторам всего мира пришлось немало потрудиться.

За всю эволюцию «железных птиц» было использовано немало типов моторов:

  1. Паровые. Принцип работы таких двигателей основан на превращении энергии пара в движение, которое передается на винт самолета. Так как паровые моторы имели низкий коэффициент полезного действия, они использовались авиационной промышленностью совсем недолго.
  2. Поршневые. Это стандартные моторы внутреннего сгорания, по конструкции напоминающие двигатели автомобилей. Принцип их работы заключается в передаче тепловой энергии в механическую. Простота в изготовлении и доступность материалов обуславливают использование таких силовых установок на некоторых моделях самолетов до настоящего времени. Несмотря на небольшой КПД (около 55%), эти моторы пользуются определенной популярностью благодаря своей неприхотливости и надежности.
  3. Реактивные. Такие моторы преобразуют энергию интенсивного сгорания топлива в тягу, необходимую для полета. На сегодняшний день реактивные двигатели используются в строительстве самолетов наиболее широко.
  4. Газотурбинные. Принцип работы этих двигателей основан на пограничном нагреве и сжатии газа сгорания топлива, направленного на вращение турбины. Они используются преимущественно в военных типах самолетов.
  5. Турбовинтовые. Это один из подвидов газотурбинных моторов. Отличие состоит в том, что энергия, полученная при работе, преобразуется в приводную и вращает винт самолета. Незначительная часть энергии идет на формирование толкающей реактивной струи. Такие моторы применяют главным образом в гражданской авиации.
  6. Турбовентиляторные. В этих двигателях реализовано нагнетание дополнительного воздуха, необходимого для полного сгорания горючего, благодаря чему удается достичь максимальной эффективности и экологической благоприятности силовой установки. Моторы такого типа широко применяются в строительстве крупных авиалайнеров.

Мы с вами познакомились с основными типами авиационных двигателей. Список моторов, которые авиаконструкторы когда-либо пытались установить на воздушные суда, рассмотренным перечнем не ограничивается. В разные времена предпринималась масса попыток по созданию всяческих инновационных силовых агрегатов. К примеру, в прошлом веке велись серьезные работы по созданию атомных авиационных моторов, которые не прижились из-за высокой экологической опасности, в случае крушения самолета.

Обычно двигатель устанавливается на крыло или фюзеляж самолета посредством пилона, через который к нему подводятся приводы, топливные трубки и прочее. В таком случае мотор облачают в защитную мотогондолу. Существуют также самолеты, в которых силовая установка находится непосредственно внутри фюзеляжа. На воздушных судах может быть от одного (Ан-2) до восьми (В-52) двигателей.

Управление

Органами управления самолета называют комплекс бортового оборудования, а также командные и исполнительные приборы. Подача команд происходит из кабины пилота, а выполняется элементами крыла и оперения. В разных самолетах могут использовать различные виды систем управления: ручная, автоматизированная и полуавтоматическая.

Независимо от вида системы, рабочие органы подразделяют на основные и дополнительные.

Основное управление . Включает в себя действия, которые отвечают за регулировку режимов полета и восстановление баланса судна в заранее установленных параметрах. К органам основного управления относятся:

  1. Рычаги, которые непосредственно управляются пилотом (рули высоты, рули горизонта, штурвал, командные панели).
  2. Коммуникации, служащие для соединения управляющих рычагов с исполнительными механизмами.
  3. Исполнительные устройства (стабилизаторы, элероны, спойлерные системы, подкрылки и закрылки).

Дополнительное управление . Используется только при взлетном и посадочном режиме.

Независимо от того, ручное или автоматическое управление реализовано в конструкции самолета, только пилот может собирать и анализировать информацию о состоянии систем самолета, показателях нагрузки и соответствии траектории с планом. И что самое главное, только он способен принять решение, максимально эффективное в сложившейся обстановке.

Контроль

Для считывания объективной информации о состоянии воздушного судна и летной обстановки пилот пользуется приборами, разделенными на несколько основных групп:

  1. Пилотажные и навигационные. Служат для определения координат, вертикального и горизонтального положения, скорости и линейных отклонений самолета. Кроме того, эти приборы контролируют угол атаки воздушного судна, работу гироскопических систем и другие важные параметры полета. На современных самолетах эти приборы представлены в виде единого пилотажно-навигационного комплекса.
  2. Контролирующие работу силовой установки. Данная группа приборов обеспечивает пилота данными о температуре и давлении масла, расходе топливной смеси, частоте вращения коленчатых валов, а также вибрационных показателях.
  3. Приборы для наблюдения за работой дополнительного оборудования и систем. Данный комплекс состоит и приборов, датчики которых можно встретить во всех элементах конструкции самолета. К ним относятся: манометры, указатели перепада давления в герметичных кабинах, указатели положения закрылков и прочее.
  4. Приборы для оценки состояния окружающей среды. Служат для измерения температуры наружного воздуха, влажности, атмосферного давления, скорости ветра и прочего.

Все приборы, которые служат для контроля состояния самолета и внешней среды? адаптируются к работе в любых погодных условиях.

Взлетно-посадочные системы

Взлет и посадка являются довольно сложными и ответственными этапами полета. Они неизбежно сопряжены с сильными нагрузками, приходящимися на все элементы конструкции. Приемлемый разгон для поднятия многотонного судна в небо и мягкое касание посадочной полосы при его посадке обеспечивает надежно сконструированная взлетно-посадочная система (шасси). Данная система также необходима для стоянки машины и ее руления при езде по аэропорту.

Шасси самолета состоит из демпферной стойки, на которой закреплена колесная тележка (у гидропланов вместо нее используется поплавок). Конфигурация шасси зависит от массы самолета. Чаще всего встречаются такие варианты взлетно-посадочной системы:

  1. Две основных стойки и одна передняя (А-320, Ту-154).
  2. Три основных стойки и одна передняя (Ил-96).
  3. Четыре основных стойки и одна передняя ("Боинг-747").
  4. Две основных стойки и две передних (В-52).

На ранних самолетах устанавливали пару основных стоек и заднее вращающееся колесо без стойки (Ли-2). Необычную схему шасси также имела модель Ил-62, которая оснащалась одной передней стойкой, парой основных стоек и выдвигающейся штангой с парой колес в самом хвосте. На первых самолетах стойки не использовали вовсе, а колеса крепились на простые оси. Колесная тележка может иметь от одной (А-320) до семи (Ан-225) колесных пар.

Когда самолет находится на земле, его управление осуществляется посредством привода, которым оснащена передняя стойка шасси. У судов с несколькими двигателями для этих целей может использоваться дифференциация режима работы силовой установки. Во время полета шасси самолета убирается в специально оборудованные отсеки. Это необходимо для уменьшения аэродинамического сопротивления.

У большинства людей самолеты вызывают особенные эмоции, восхищение.

В детстве ребенок задирает голову, глядя на крохотную точку в небе, оставляющую за собой белый след, в аэропорту и дети, и взрослые любят прильнуть к панорамным окнам, наблюдая за неспешным рулением самолетов по перрону, взлетом или посадкой, самолеты всегда фотографируют и подолгу на них смотрят. Казалось бы, транспорт и транспорт, но нет…

К машинам нет такого массового благоговения, к поездам нет, к кораблям тоже… а к самолетам есть. И ко всему, что с ними связано. Может быть потому, что по земле и воде человек тоже может передвигаться (ходить и плавать), а вот в небо подняться он может только на самолете?

Я множество раз был на различных производствах - от небольших до гигантских, на никому неизвестных предприятиях и на заводах всемирно известных брендов, но всегда мечтал побывать там, где делают самолеты. Те самые самолеты, приводящие всех в восторг, на которых все мы летаем, которые фотографируем и восхищаемся.

Наконец, моя небольшая мечта реализовалась, и на прошлой неделе я побывал во французской Тулузе на главных сборочных мощностях авиационного гиганта Airbus, где своими глазами увидел, как делают самолеты.

1. Если вы так же, как и я любите самолеты и хотите своими глазами увидеть немного больше, чем привыкли видеть в аэропорту, вам нужно попасть в городок Бланьяк, близ Тулузы.

Здесь располагается аэропорт с кодом TLS, являющийся одновременно и тулузским международным аэропортом, и частью огромного завода Airbus. У аэропорта и завода общая взлетно-посадочная полоса, поэтому даже сидя в зале ожидания или бизнес-лонже вы вполне можете увидеть, помимо лайнеров нескольких десятков авиакомпаний, осуществляющих сюда рейсы, и очень много самолетов самого необычного вида, как, например, этот Airbus A380 катарских авиалиний, еще не имеющий ливреи и отправляющийся в свой первый (!) пробный полет!

2. Вообще, попасть в сборочные цеха Airbus может каждый желающий! На заводах компании в Тулузе и Гамбурге организованы 2х-3х часовые туры стоимостью 10-15 евро. Имейте в виду, что для желающих попасть на завод обязательна предварительная резервация. Кроме того, учтите, что фотографировать во время такой экскурсии строго запрещено, как на любые виды камер, так и на мобильные телефоны, за чем очень строго следят сопровождающие.

Но мы побывали на заводе Airbus не в рамках экскурсионного тура, а провели здесь целых два дня с утра до вечера и без каких-либо запретов на фотосъемку.

Вообще, Airbus S.A.S - одна из крупнейших авиастроительных компаний в мире, образованная в конце 1960-х годов путем слияния нескольких европейских авиапроизводителей. Производит пассажирские, грузовые и военно-транспортные самолёты под маркой Airbus. Штаб-квартира компании находится в городе Бланьяк (пригород Тулузы, Франция), как и главные сборочные мощности. При этом у компании целых четыре сборочных площадки - в Тулузе (Франция), Гамбурге (Германия), Мобиле (Алабама, США), Тяньцзине (Китай).

На заводе в Тулузе, о котором сегодня пойдет речь, собирают весь модельный ряд: A380, A350, A330/A330neo, A320/320neo. При этом A380, A350, A330 собирают только на этом заводе.

3. Первым делом отправимся в цеха, где делают самый коммерческий успешный самолет компании - серию A320/A320neo.

В свое время A320 стал настоящим хитом и одним из наиболее распространенных самолетов ИЗ ВСЕХ существующих в настоящее время в мире. С 1988 года произведено уже более 7 600 единиц A320/A320neo, из которых более 8 000 летают на данный момент.

Подсчитано, что каждые 1,4 секунды в мире где-то садится или взлетает один A320, а если выстроить все произведенные самолеты этого типа в линию, то ее длина составит 260 километров.

Полный производственный цикл одного A320 (от сборки первой детали до поставки самолета заказчику) составляет около года, а основные узлы самолета делают в 4-х странах: носовую и переднюю часть фюзеляжа - во французском Сен-Назаре, средние и хвостовую часть фюзеляжа - в Гамбурге, горизонтальный стабилизатор - в испанском Хетафе, вертикальный стабилизатор - в немецком Штаде, крылья - в английском Бротоне, закрылки - в Бремене…

Все эти части свозятся на одну из сборочных площадок, где происходит финальная сборка самолета, занимающая около 1 месяца.

4. К месту финальной сборки в Европе (а это Тулуза и Гамбург) крупные элементы самолетов - части фюзеляжа, крылья и стабилизаторы доставляют по воздуху, в недрах огромного транспортного самолета Airbus Beluga .

Этот пост и так получается очень объемным, поэтому в о Белуге я сделаю отдельный материал (встречайте его сегодня вечером).

5. Вот так выглядит задняя часть фюзеляжа A320, только выгруженная из огромной Белуги около линии финальной сборки. При этом на заднем плане хорошо видно пассажирский терминал аэропорта Тулуза-Бланьяк и только что вернувшийся из технического полета A330 для китайской компании Tianjin Airlines.

6. Линия финальной сборки A320 в Тулузе располагается не где-нибудь, а в тех самых ангарах, в которых в свое время собирали легендарные Concorde. Вы удивитесь, но на основании этого факта ангары даже признаны историческим памятником!

С одной стороны, это круто и уникально, с другой - накладывает определенные ограничения на Airbus, так как их нельзя перестраивать, изменять и т.д. Казалось бы, что в этом такого? Чуть ниже поймете)

7. Входим в ангары FAL - Final Assembly Line. Именно здесь происходит финальная сборка самолетов, начиная от соединения частей фюзеляжа и заканчивая «начинкой» - оборудованием электроникой и монтажом внутреннего интерьера.

Удивительно, но этот странный зеленоватый обрубок с закрытой красной тканью задней частью не что иное, как будущий самолет.

8. В передней части он немного больше похож на себя привычного - угадывается и кабина пилотов, и иллюминаторы салона. Правда, еще нет ни крыльев, ни хвоста, ни двигателей, ни кресел, ни электроники.

9. Кстати, территория цеха сборки вся разделена на зоны, каждая их которых отрисована на полу: зоны расположения так называемых станций сборки, зоны перемещения подвижной техники, зоны для перемещения людей. За красную линию человеку без доступа нельзя. Там может находиться только персонал, работающий с тем или иным самолетом.

10. Хвостовая часть будущего A320 и задний выход.

11. Место крепления крыла самолета.

12. Переходим на следующую станцию. Здесь уже идет монтаж крыльев, поперечного и вертикального стабилизаторов. Крылья приходят без законцовок, механизации, шасси и двигателей. Все это будет установлено в течение нескольких следующих недель.

13. Установка вертикального стабилизатора. Кстати, его первым красят в цвета ливреи авиакомпании, для которой собирают тот или иной борт. Как вы понимаете, все самолеты собираются под заказ авиакомпаний согласно предварительному контракту и никогда на склад, как это бывает с автомобилями.

14. Перемещаемся на следующую станцию. Здесь осуществляется монтаж внутренней обшивки салона. В боксах видны готовые блоки с прорезями для иллюминаторов.

15. Рамки иллюминаторов.

16. Из первого ангара FAL самолет входит с полностью собранным фюзеляжем, установленными крыльями, горизонтальным и вертикальным стабилизаторами, частью салона.

17. После этого A320 покидает первый ангар и его перемещают в соседний, где происходит монтаж двигателей, авионики, всей электроники и вся остальная сборка до самого конца. Но здесь есть одна сложность .

Это исторические ангары, в которых делали Concorde. Те самолеты были гораздо ниже, а вот хвост у A320 намного выше проема ангара (!), обычным способом его отсюда просто не выкатить! Но так как здание историческое, его просто НЕЛЬЗЯ перестроить или даже прорубить проем для прохода стабилизатора самолета, как это часто делается. Вот и пришлось инженерам Airbus придумать специальный домкрат, которым приподнимают переднюю часть и так выкатывают самолет из ангара, опуская заднюю часть лайнера вместе с хвостом к самой земле…

18. Станция монтажа авионики и электроники. Здесь удалось поймать за хвост будущий борт Аэрофлота.

19. Знаете, почему у самолетов на производстве красный нос?

20. Под носовым обтекателем располагается очень чувствительное радиолокационное оборудование, поэтому на нос наносится красная пленка, предупреждающая об особом внимании. Позже, перед покраской, эту пленку просто снимут.

21. Практически в самом конце в самолет устанавливают кресла согласно выбранной авиакомпанией компоновке салона и шагу между креслами.

22. Затем на самолет устанавливают двигатели и красят его в ливрею авиакомпании.

23. Двигатель современного A320neo. Он настолько огромен, что по диаметру больше чем … салон некоторых бизнес-джетов!!!

24. Все, теперь самолет можно выкатывать на летные испытания! В самом конце идет стадия «предпродажной» подготовки и процесс передачи самолета заказчику. От заказчика приезжает комиссия и придирчиво проверяет абсолютно все: и на предмет соответствия самолета выбранной спецификации, и на предмет функционирования всего, начиная от от розеток для пассажиров, заканчивая двигателями и авионикой. Затем приемочный полет и …

25. И всё, самолет готовят к своему первому рейсу с кодом авиакомпании, под которым он полетит на аэродром базирования в Азии, Европе, на Ближнем Востоке или Африке.

26. Недалеко от цехов A320 высятся огромные стабилизаторы в цветах лучших мировых авиакомпаний - это новейшие A350, которые начали собирать не так давно и которые только-только начинают массовое распространение по планете. Конечно же, первыми новинку получают самые крупные, самые богатые, самые известные авиакомпании.

По пути встречаем детали фюзеляжа, которые раза в 1,5 больше, чем эти же детали для А320. Оно и понятно, ведь это уже широкофюзеляжный дальнемагистральный самолет, вмещающий в два раза больше пассажиров и способный покрывать намного большие расстояния в небе.

Кстати, для сборки одного А350 нужно 7 (!!!) рейсов Белуги. Одним привозят носовую часть фюзеляжа, вторым - среднюю, затем заднюю, хвост и горизонтальные стабилизаторы, два крыла (по одному рейсу на каждое), и один рейс с различными громоздкими частями самолета.

28. Первое что бросается в глаза на сборочной линии А350 - масштаб и простор. Это уже современные цеха с очень высокими потолками и десятком собираемых самолетов одновременно.

29. Во время сборки А350 их уже не катают со станции на станцию, все собирается на одном сборочном участке.

30. Место крепления крыла. Видны крепежи будущих магистралей, жгутов проводов и различных трубок.

31. Предкрылки.

32. Крыло в сборе без шарклета.

33. Запасный выход.

34. Горизонтальный стабилизатор.

35. Стойка переднего шасси.

36. Вот в таких ящиках приходят оборудование и части самолета.

37. Кабина пилотов, вид спереди.

38. Красный нос А350.

39. Станция FAL Airbus A350.

40. Собранные самолеты выкатывают на улицу, где они ждут своей очереди летных испытаний, а затем отправки на покраску.

41. Уже в самом конце, уезжая из сборочного цеха, нам удалось увидеть приземлившийся A350-1000, следующая версия A350, которая еще не пошла в серию, а только проходит летные испытания.

Юрий КУЗЬМИН


ИЗ ИСТОРИИ АВИАЦИИ

Феликс дю Тампль (1823 ~ 1890)


Ранние самолёты чаще всего ассоциируются с деревянными «этажерками», обтянутыми тканью. Действительно, во время Первой мировой войны большинство самолётов были именно таковыми. Металл если и использовался, то только в стыковочных узлах, в проводке управления, а также в виде рояльной проволоки, идущей на расчалки.

Поэтому сегодня нам может показаться удивительным, что металл, а конкретнее – сталь, был применён в самолётостроении на четверть века раньше, чем дерево.

Нет, первый успешно летавший самолёт («Флайер» братьев Райт), как и положено «этажерке», был деревянным. И его неудачливый соперник («Аэродром» Лэнгли) тоже.

Но вот первый в мире построенный (хотя и не летавший) самолёт был стальным.

Мы не знаем точно, из чего был изготовлен планер самолёта Можайского. Но этот аппарат был только вторым, хотя и стал первым, доведённым до лётных испытаний.

Самым же первым построенным самолётом, то есть, летательным аппаратом тяжелее воздуха (в отличие от аэростатов), создающим подъёмную силу при помощи крыла (в отличие от ракет и вертолётов), оснащённым механическим двигателем (в отличие от планеров) и предназначенным для перевозки человека (в отличие от летающих моделей), был самолёт дю Тампля.

Французский морской офицер Феликс дю Тампль начиная с 1850-х годов строил летающие модели с пружинными двигателями. В 1857 г. он получил патент на летательный аппарат с мотором, а после выхода в отставку, в конце 1 860-х годов, начал его строительство.

Это был свободнонесущий высокоплан с нормальным оперением и тянущим винтом. Крыло имело сложную форму, которая определялась конструкцией каркаса: два напряженных расчалками изогнутых лонжерона перекрещивались, образуя жесткие треугольные фермы.

Шасси планировалось сделать убираемым, но при постройке пришлось от этого отказаться.

В целом самолёт выглядел очень даже современно – не хуже монопланов Юнкерса, появившихся на 40 лет позже. Но о них речь впереди.

Ахиллесовой пятой проекта стал двигатель. Паровая машина весом 59 кг развивала мощность всего лишь 4 л.с. – примерно в 20 раз меньше, чем требовалось для полёта. Да и вообще, сам самолёт, как и большинство ранних аппаратов, был сильно переразмерен. Размах крыла достигал 30 м (размах крыла самолёта Можайского был равен 23 м, летающей машины Хирама Максима – 32 м).

Изобретатель 10 лет пытался облегчить конструкцию, уменьшал размеры, менял схему крыла… но даже до попытки взлёта дело так и не дошло.

И всё-таки аппарат дю Тампля – это первый построенный полноразмерный самолёт. А построен он был из стальных труб. Из них изготавливались и лонжероны крыла и оперения, и каркас гондолы, и стойки шасси.

Вот и получается, что сталь пришла в авиацию куда раньше древесины.



Рисунок из патента дю Тампля. Показаны перекрещивающиеся лонжероны крыла


СТАЛЬ В ВОЗДУХЕ

Самолёт дю Тампля (как и самолёт Можайского) из-за слабого мотора даже не пытался взлететь. Но первый взлетевший (хотя и не по своей воле) аппарат тяжелее воздуха тоже был стальным!

В 1894 г. знаменитый изобретатель пулемёта американец Хирам Максим, переехавший в Великобританию, построил экспериментальную установку для измерения подъёмной силы. Это был именно экспериментальный стенд, не предназначенный для свободного полёта.

На большой четырёхколёсной тележке установили две мощные 90-сильные паровые машины, вращавшие два воздушных винта. К тележке крепились различные коробки крыльев (от двух до пяти плоскостей) и рули высоты.

Всё это сооружение передвигалось по деревянным рельсам. Интересно, что на расстоянии 60 см над нижними рельсами установили еще одни – верхние. После взлёта колёса аппарата должны были прижаться к верхним рельсам и катиться уже по ним (ещё раз повторим, что свободный полёт не планировался). Так замерялась подъемная сила крыла.



Аппарат Максима с установленными дополнительными крыльями





Первый успешно летавший стальной самолёт был не немецким, а французским (рисунок REP-1 из энциклопедии «Авиация»), Изображённый на рисунке четырёхлопастный винт в самом начале испытаний был заменён двухлопастным.


Самолёт REP-1 имел велосипедное шасси. Поддерживающие колёса на концах крыла были очень большими. Киля нет, его заменяет клиновидная хвостовая часть фюзеляжа



Успешный REP-2bis. Приняты меры по увеличению устойчивости: появился большой киль, вырос размах цельноповоротного стабилизатора, уменьшено отрицательное поперечное V крыла


Но подъёмная сила оказалась слишком высока. 31 июля 1894 года, после 270 м разбега колёса проломили верхний рельс. Аппарат взмыл на высоту около 5 м и, естественно, упал. Машинист (или уже пилот?), вовремя прекративший подачу пара, не пострадал. После такого успеха, как ни странно, Максим прекратил опыты. Возможно, ему надо было просто доказать, что паровой аппарат может создать достаточную подъемную силу, и он продемонстрировал это максимально эффектно.

Для нас же важно, что вся тележка была сварена из стальных труб. Следовательно, первый оторвавшийся от земли за счёт аэродинамических сил аппарат тяжелее воздуха с собственной силовой установкой был стальным.

БЫЛ ЛИ ЮНКЕРС ПЕРВЫМ?

Всё-таки аппарат Максима – не самолёт. А как обстоят дела с настоящими самолетами?

Во многих источниках приоритет в использовании стали в конструкции аэропланов отдают немцам, а точнее Хьюго Юнкерсу. Но это совсем не так.

Первым, успешно летавшим самолётом со стальным каркасом был построенный в 1907 г. моноплан французского конструктора Роберта Эсно-Пельтри REP-1.

Правда, стальным был только фюзеляж. Лонжероны крыла были деревянными (со стальными стыковыми узлами), а обшивка оставалась полотняной. Но это первое успешное применение стали в силовой конструкции реальных самолётов.

REP-1 развивал в полёте скорость до 80 км/ч, но управлять им было очень сложно, так как сказывались отрицательное поперечное V крыла и отсутствие киля. Всё это делало аппарат весьма неустойчивым. Поэтому дальность полётов не превышала нескольких сот метров.


Траян Вуйя



Первый самолет Вуйя. За крылом можно разглядеть киль и оперение. Стойки тележки наклонные



Открытка 1907 г. Второй самолёт Вуйя отличался конструкцией тележки: стойки вертикальные, а не наклонные. Рядом сам конструктор


Но самолёт стал началом успешной цепочки других летательных аппаратов. В 1908 г. REP-2 пролетел уже 1200 м, а REP-2bis (1909 г.) летал долго, хорошо и был запущен в серийное производство.

В 1911 г. Эсно-Пельтри перешёл на работу в английскую компанию «Виккерс», и там построил ещё 8 стальных монопланов.

РУМЫНСКИЙ ДЕБЮТ

Моноплан REP вероятно (полной уверенности у меня нет, так как в ранней истории авиации ещё много сюрпризов) может считаться первым успешно летавшим самолётом со стальным каркасом. И уж точно – первым серийным самолётом подобной конструкции.

Но впервые стальной самолёт совершил полёт на полтора года раньше и совсем в другой стране.

Честь первых полётов на самолёте в Европе часто приписывают Альберто Сантос-Дюмону – бразильцу, постоянно жившему в Париже. Его заслуги перед авиацией действительно велики. Но первый его полёт, точнее, подскок, состоялся только 7 сентября 1 906 г. Лишь 12 ноября он увеличил дальность полёта до 220 м.

До этого же его результаты были не более впечатляющими, чем у двух его предшественников: датчанина Элехаммера и румына Трояна Вуйя. Самолёт Элехаммера взлетел на 5 дней позже Сантос-Дюмона, а вот аппарат Вуйя – на полгода раньше. 18 марта 1906 г., после 50-метрового разбега по горизонтальной грунтовой дороге он оторвался от земли и пролетел около 12 м на высоте 1 м.

Этот полёт отличался двумя особенностями:

1. В отличие от самолётов братьев Райт или профессора Лэнгли, аппарат Вуйя стартовал сам, без помощи катапульты.

2. В отличие от самолёта Максима, это был спланированный полёт и, что ещё важнее, аппарат приземлился не повреждённым и готовым к повторному вылету.

Так что заслуги Вуйя в истории авиации велики: первый полёт самолёта в Европе и первый успешный полёт без применения разгонных устройств (катапульты).

Но для нас главное то, что Вуйя строил свой самолёт по автомобильной технологии из конструкционной стали. Из стальных труб были сделаны и лонжероны крыла, и каркас оперения (цельноповоротный киль и треугольное горизонтальное оперение за крылом).

Значит, можно говорить о том, что первый европейский самолёт, совершивший запланированный полёт, тоже был стальным.

НЕМЕЦКИЙ ВКЛАД

А что же немцы? Неужели все приоритеты в этой области принадлежат другим народам?

Конечно же, нет, ведь широко известен «истинно цельнометаллический» немецкий самолёт, в котором стальными были не только каркас, но и обшивка.

Самолёт сконструировал профессор Ханс Рейсснер, заведующий кафедрой механики технического университета в городе Аахен. Ешё в 1908 г. Рейсснер начал летать на биплане «Вуазен», но в 1909 г. разбил самолёт. После этого он решил построить аппарат своей конструкции.

Деньги дал успешный промышленник Хьюго Юнкере. Юнкере изобрел, запатентовал и выпускал на своём заводе очень полезную вещь – газовый водонагреватель на проточной воде, всем известный «титан». Для удовольствия Юнкере работал ещё и профессором на кафедре Рейсснера.

Именно Юнкере посоветовал Рейсснеру строить самолёт из железа. Разработка началась в феврале 1910 г.



Первый в мире самолёт, в котором стальными были и каркас, и обшивка: «утка» Рейсснера, май 1912 г.



После аварии в воздухе снова видели «Утку» Рейсснера. В отличие от первого самолёта килей стало пять, а фюзеляж зашили полотном. Был это восстановленный первый самолёт или полностью новый – неизвестно



«Тюбавьен» – первый в мире самолёт с металлическими каркасом и обшивкой. Весна 1912 г. (после облегчения конструкции, но ещё с дюралевой обшивкой и мотором Labor).


Рейсснер выбрал схему «утка» с клинообразным фюзеляжем. Самолёт так и назвали – Ente (утка). Кстати, само название «утка» для обозначения самолётов с передним расположением руля высоты пошло от собственного имени самолёта Блерио-V «Canard» (Canard – утка по-французски), появившегося в 1907 г.

Крыло и оперение самолета Рейсснера были покрыты гофрированными стальными листами. Под крылом размещались два небольших киля. Рядный мотор «Аргус» (70 л.с.) в хвостовой части фюзеляжа вращал толкающий винт. Шасси было трёхколёсное с носовым колесом. На основных стойках крепились лыжи: смысл их установки при наличии носового колеса мне понять так и не удалось.

Аппарат построили в институте Юнкерса в Аахене в феврале 1912 г. Такой долгий для начала века срок (2 года) объяснялся необычностью конструкции.

23 мая 1912 г. самолёт впервые поднялся в воздух. Испытания заняли три месяца, а с августа до ноября 1912 г. он уже совершал публичные полёты в Берлине.

В конце 1912 г. аппарат вернули в Аахен, но 27 января 1913 г. самолет разбился, сорвавшись в штопор.

Именно «Утка» Рейсснера стала первым самолётом, в котором из стали были сделаны и каркас, и обшивка крыла и оперения (фюзеляж был без обшивки).

Но возможности нового материала использовались ещё не в полной мере: крыло было тонким, и его пришлось подкреплять расчалками.

И ВСЁ-ТАКИ – ФРАНЦУЗЫ

Надеюсь, читатель не обидится на меня за подробный рассказ об «Утке» Рейсснера, узнав, что этот самолёт все же не был первым цельнометаллическим.

Первыми в этом всё-таки оказались французы.

За два месяца до полёта «Утки», в марте 1912 г., французские металлурги из Соммы Шарь Понше и Морис Прима испытали свой высокоплан «Тюбавьён».

Конструкция его была необычной. Основой каркаса служила стальная цельнотянутая труба, на которую надели винт. Винт приводился во вращение ременной передачей от рядного двигателя «Набор», установленного ниже. Перед винтом на той же трубе крепилось прямоугольное крыло, а сзади – крестообразное оперение с рулём высоты, стабилизатором и цельноповоротным килем. Под трубой была смонтирована ферма, на которой разместили сиденье пилота и двигатель. К нижним трубам фермы присоединялась ось шасси.

Вероятно, это был первый самолёт с подобной установкой винта. Такая схема применялась и в дальнейшем, хотя и не часто, но сейчас речь не об этом.

Особенностью «трубоплана» (примерно так можно перевести слово Tubavion) была дюралевая обшивка и крыла, и оперения.

Аппарат построили ещё в конце 1911г., и в том же году он успел покрасоваться на Парижском авиасалоне, но оторваться от земли удалось не сразу: самолёт был слишком тяжёл даже для столь мощного 70-сильного мотора. Пришлось облегчать конструкцию, сняв два из четырёх колес шасси и всю обшивку фюзеляжа. В таком виде в марте 1912 г. «Тюбавьён», наконец, взлетел.

Правда, летал он плоховато, и летом того же года конструкторы переделали его, заменив большую часть обшивки на обычную полотняную, а капризный «Лабор» – на ротативный двигатель «Гном» той же мощности (70 л.с.), установив его прямо на трубе, сразу за винтом.

Самолёт потерял большую часть уникальности, но полёт в марте 1912 г. уже даёт ему право называться первым в мире самолёт с металлическим каркасом и обшивкой.

А «Утка» Рейсснера остаётся вторым в мире самолётом с металлическим каркасом и обшивкой, но зато первым в мире цельностальным (вспомним, что у «трубоплана» обшивка была дюралевой).

А ЧТО ЖЕ ЮНКЕРС?

В 1915 г. Юнкере построил знаменитый свободнонесущий моноплан J1. Стальными у него были и каркас, и обшивка. Толщина обшивки колебалась от 0,5 мм до 1 мм, с каркасом она соединялась точечной электросваркой.

Как видим, Юнкере J1 не был первым цельностальным самолётом, но в нём впервые удалось полностью использовать преимущества стали и толстого свободнонесущего крыла.



Юнкере J.1 не был первым в мире стальным самолётом, но в нём впервые удалось использовать преимущества нового материала



Типичный самолёт конца 1920-х годов: каркас фюзеляжа, крыла и оперения – стальные трубы, обшивка полотняная. На фотографии прототип самолёта Avro 621 Tutor с мотором Mongoose, 1929 г.



Советский самолёт «Сталь-2» со стальным каркасом, 1931 г.


На фотографии каркаса фюзеляжа и на схеме лонжерона крыла самолёта «Сталь-2» видно, насколько трудоемкой была конструкция стальных самолётов 1930-х годов


12 декабря Фридрих фон Маленкродт совершил на J1 первый полёт. Испытания прошли успешно, но военных не удовлетворили малая скороподъёмность (чуть более 1 метра в секунду) и невысокая полезная нагрузка.

Поэтому в серию пошёл совсем другой самолёт – биплан Junkers J4.

На вооружение его приняли под наименованием J.I, что позднее создало немалую путаницу. Надо помнить, что это совсем разные буквы «джей». J4 означает 4-ю конструкцию фирмы Junkers, а J.I – первый ударный самолёт. Классификация «J» для ударных самолётов была введена авиационным бюро немецкого военного министерства в 1917 г. Для номеров «юнкерса» использовались арабские цифры, а для номеров военного министерства – римские.

Следовательно, для нас роль Юнкерса представляется интересной тем, что на его фирме был построен первый в мире цельностальной свободнонесущий моноплан.

И, конечно, не стоит забывать о финансировании работ профессора Рейсснера.

РАЗВИТИЕ

В 1920-е годы самолётов со стальным каркасом стало больше, чем с деревянным. Фюзеляж обычно «строился» вокруг сварной фермы из стальных труб. На эту ферму накладывались продольные и поперечные элементы (стрингеры и шпангоуты) из различных материалов (дерево, дюраль), а сверху шла полотняная, фанерная или дюралевая обшивка. Каркас крыла всё чаще тоже делали стальным.

Но прошла новая технологическая революция, и к концу 1930-х годов казалось, что сталь как конструкционный материал полностью уступила свои позиции алюминию.

На смену фермам из труб пришёл набор фюзеляжа и крыла из открытых дюралевых профилей, всё чаще сочетавшихся с силовой дюралевой обшивкой.

Немногочисленные цельностальные самолёты, строившиеся в 1930-х годах, себя не оправдали. Собирать сварные конструкции из очень тонких стальных листов было сложно и дорого: малейшая оплошность – и лист «прогорал». Требовалась очень высокая квалификация рабочих, но всё равно сварное соединение становилось слабым местом, с которого начиналась коррозия.

Выяснилось, что самолёты из нержавеющей стали приходят в негодность через 2-5 лет именно из-за ржавчины, появляющейся в месте сварки.



Советский самолет «Сталь-3»



Цельностальной транспортный самолёт Бад RB-1 «Conestoga», 1943 г. Построено 20 экземпляров. На снимке второй прототип.



В годы Второй Мировой войны, когда алюминия не хватало, проекты стальных самолётов реанимировали. Значительная доля стали испорльзовалась, к примеру, в конструкции планера реактивного истребителя Мессершмитт Ме-262. Но самой масштабной программой

осталась постройка 20 цельностальных транспортных монопланов Бадд RB-1 «Conestoga» в США. Впрочем, они с самого начала рассматривались как временная мера для борьбы с «дюралевым голодом».

Вновь сталь вернулась в авиацию на вполне законных основаниях уже после войны, когда самолетостроители начали проектировать самолеты, способные летать со скоростями, соответствующими большим значениям числа М. Тут, к примеру, можно вспомнить знаменитый МиГ-25, конструкция которого на 80% по массе выполнена из стали.

Впрочем, это уже другая история.

ПЕРВЫЕ СТАЛЬНЫЕ САМОЛЁТЫ

Стал незаменимым материалом во многих производствах. Авиационный алюминий - группа сплавов, отличающихся повышенной прочностью с включением магния, кремния, меди и марганца. Дополнительную прочность сплаву придают при помощи т. н. «эффекта старения» - особого метода закалки под воздействием в течение длительного времени агрессивной атмосферной среды. Сплав был изобретен в начале 20 века, получив название дюралюминий, сейчас известен также под названием «авиаль».

Определение. Исторический экскурс

Началом истории авиационных алюминиевых сплавов считается 1909 год. Немецкий инженер-металлург Альфред Вильм опытным путем установил, если сплав алюминия с незначительным добавлением меди, марганца и магния после закалки при температуре 500 °C и резкого охлаждения выдержать при температуре 20-25 градусов в течение 4-5 суток, он поэтапно становится тверже и прочнее, не теряя при этом пластичности. Процедура получила название «старение» или «возмужание». В процессе такой закалки атомы меди заполняют множество мельчайших зон на границах зерен. Диаметр атома меди меньше, чем у алюминия, потому появляется напряжение сжатия, вследствие чего повышается прочность материала.

Впервые сплав был освоен на немецких заводах Dürener Metallwerken и получил торговую марку Dural, откуда и произошло название «дуралюмин». Впоследствии, американские металловеды Р. Арчер и В. Джафрис усовершенствовали состав, изменив процентное соотношение, в основном магния. Новый сплав получил название 2024, который в различных модификациях широко применяется и сейчас, а все семейство сплавов - «Авиаль». Название «авиационный алюминий» этот сплав получил практически сразу после открытия, поскольку полностью заменил дерево и метал в конструкциях летательных аппаратов.

Основные виды и характеристики

Выделяют три основных группы:

  • Семейства алюминий-марганец (Al-Mn) и алюминий-магний (Al-Mg). Основная характеристика - высокая, едва уступающая чистому алюминию коррозийная стойкость. Такие сплавы хорошо поддаются пайке и сварке, но плохо режутся. Не упрочняются термической обработкой.
  • Коррозионно-стойкие сплавы системы алюминий-магний-кремний (Al-Mg-Si). Упрочняются термической обработкой, а именно закалкой при температуре 520 °C с последующим резким охлаждением воде и естественным старением около 10 суток. Отличительная характеристика материалов этой группы - высокая коррозионная стойкость при эксплуатации в обычных условиях и под напряжением.
  • Конструкционные (Al-Cu-Mg). Их основа - легированный медью, марганцем и магнием алюминий. Изменяя пропорции получают авиационный которого могут отличаться.

Материалы последней группы обладают хорошими механическими свойствами, но при этом весьма подвержены коррозии, чем первое и второе семейство сплавов. Степень подверженности коррозии зависит от вида обработки поверхности, которую все равно необходимо защищать лакокрасочным покрытием или анодированием. Коррозионная стойкость частично увеличивается введением в состав сплава марганца.

Помимо трех основных видов сплавов различают также ковочные высокопрочные конструкционные и др. обладающие необходимыми для конкретной сферы применения свойствами.

Маркировка авиационных сплавов

В международных стандартах первая цифра маркировки авиационного алюминия обозначает основные легирующие элементы сплава:

  • 1000 - чистый алюминий.
  • 2000 - дюралюмины, сплавы легированные медью. В определенный период - самый распространенный аэрокосмический сплав. В связи с высокой чувствительностью к коррозийному растрескиванию все чаще заменяются сплавами серии 7000.
  • 3000 - легирующий элемент - марганец.
  • 4000 - легирующий элемент - кремний. Сплавы известны также как силумины.
  • 5000 - легирующий элемент - магний.
  • 6000 - самые пластичные сплавы. Легирующие элементы - магний и кремний. Могут подвергаться термозакалке для повышения прочности, но по этому параметру уступают сериям 2000 и 7000.
  • 7000 - термически закаленные сплавы, самый прочный авиационный алюминий. Основные легирующие элементы - цинк и магний.

Вторая цифра маркировки - порядковый номер модификации алюминиевого сплава после исходного - цифра «0». Две заключительные цифры - номер самого сплава, информация о его чистоте по примесям. В случае если сплав опытный, к маркировке добавляется пятый знак «Х».

На сегодняшний день, самые распространенные марки авиационного алюминия: 1100, 2014, 2017, 3003, 2024, 2219, 2025, 5052, 5056. Отличительными особенностями этих сплавов являются: легкость, пластичность, хорошая прочность, стойкость к трению, коррозии и высоким нагрузкам. В авиастроении наиболее широко используемые сплавы - авиационный алюминий 6061 и 7075.

Состав

Основными легирующими элементами авиационного алюминия являются: медь, магний, кремний, марганец, цинк. Процентное содержание этих элементов по массе в сплаве определяют такие характеристики, как прочность, гибкость, стойкость к механическим воздействиям и др. Основа сплава - алюминий, основные легирующие элементы: медь (2,2-5,2% массы), магний (0,2-2,7%) и марганец (0,2-1%).

Семейство авиационных сплавов алюминия с кремнием (4-13% массы) с незначительным содержанием других легирующих элементов - медь, марганец, магний, цинк, титан, бериллий. Используется для изготовления сложных деталей, известный также как силумин или литейный алюминиевый сплав. Семейство сплавов алюминий-магний (1-13% массы) с другими элементами обладают высокой пластичностью и коррозионной стойкостью.

Роль меди в составе авиационного алюминия

Присутствие меди в составе авиационного сплава способствует его упрочнению, но в то же время плохо влияет на его коррозионную стойкость. Выпадая по границам зерен, в процессе закалки, медь делает сплав подверженным под напряжением и межзеренной коррозии. Зоны богатые медью более гальванически катодные, чем алюминиевая матрица вокруг, а потому более уязвимы для коррозии, происходящей по гальваническому механизму. Увеличение содержания меди в массе сплава до 12% повышает прочностные свойства за счет дисперсного упрочнения в процессе старения. При содержании меди в составе свыше 12% сплав делается хрупким.

Сферы применения

Алюминиевые сплавы являются наиболее востребованным металлом по продаже. Легкий вес авиационного алюминия, прочность делают этот сплав хорошим выбором для многих производств от самолетов до предметов быта (мобильные телефоны, наушники, фонарики). Алюминиевые сплавы применяются в судостроении, автомобилестроении, строительстве, производстве ж/д транспорта, в атомной промышленности.

Широко востребованы сплавы с умеренным содержанием меди (2014, 2024 др.). Профили из этих сплавов имеют высокую коррозийную стойкость, хорошую обрабатываемость, точечную свариваемость. Из них изготавливают ответственные конструкции самолетов, большегрузных автомобилей, военной техники.

Особенности соединения авиационного алюминия

Сварка авиационных сплавов осуществляется исключительно в защитной среде инертных газов. Преимущественными газами являются: гелий, аргон или их смесь. Более высокой теплопроводностью обладает гелий. Это определяет более благоприятные температурные показатели сварочной среды, что позволяет достаточно комфортно соединять толстостенные элементы конструкций. Использование смеси защитных газов способствует более полному газоотводу. При этом вероятность образования пор в сварном шве значительно уменьшается.

Применение в авиастроении

Авиационные алюминиевые сплавы изначально специально создавались для строительства авиационной техники. Из них изготавливают корпуса летательных аппаратов, детали двигателей, шасси, топливные баки, крепежные устройства и др. Детали из авиационного алюминия используются в интерьере салона.

Алюминиевые сплавы серии 2ххх используют для производства деталей, подвергающихся воздействию высоких температур. Детали малонагруженных узлов, топливных, гидро- и маслосистем изготавливают из сплавов 3ххх, 5ххх и 6ххх. Наиболее широкое применение в авиастроении получил сплав 7075. Из него изготавливаются элементы для работы при значительной нагрузке, низких температурах с высокой стойкостью к коррозии. Основой сплава является алюминий, а основными легирующими элементами: магний, цинк и медь. Из него изготавливают силовые профили конструкций самолетов, элементы обшивки.

Конструкционные материалы, из которых изготавливают самолеты, прошли стремительную эволюцию вместе с развитием самой авиации. От полотняных аэропланов в начале прошлого века до современных стальных птиц. За 100 лет существования авиации, материалы, из которых изготавливают авиалайнеры, существенно изменились.

Самые первые самолеты (братьев Райт, США – 1903 г.; «Вуазен», Франция – 1905г; «Блерио», Франция – 1906 г.; «Рой», Англия – 1908 г.) изготавливались из тонких стальных труб, обтянутых материей, или имели деревянную конструкцию и полотняную обшивку поверхностей. Следующим шагом совершенствования конструкций самолета следует считать замену тканей на обшивку фанерой. Для повышения прочности фанерных конструкций, их стали делать в несколько слоев, скрепленных клеем.

Однако, деревянные конструкции были довольно неуклюжими, имели большое сопротивление во время полета. С увеличением скоростей самолетов, повышением нагрева конструкций и элементов двигателей, их использование стало небезопасным. Конструкторы стали постепенно заменять деревянные детали на металлические. Но полностью металлические самолеты появились не сразу.

Несовершенная технология производства металла на первых этапах его применения в авиации, делала конструкции из него, тяжелее деревянных, поэтому переход на металл происходил не быстро. Первые пробные аэропланы целиком из металла были изготовлены немцами в начале второго десятилетия прошлого века. По весу они превышали деревянные конструкции в несколько раз, и их летные данные оставляли желать лучшего.

Большинство аэропланов, использовавшихся в Первой мировой войне (1914-1918 гг.), были деревянными с тканевой обшивкой.

После войны основной причиной развития металлических самолетов послужило появление пассажирской авиации, потребовавшей производства большого количества самолетов с длительными сроками эксплуатации. Деревянные конструкции набухали под действием неблагоприятных атмосферных явлений (влаги, температуры). При определенных условиях они начинали подгнивать. Все это приводило к их быстрому выходу из строя, и не удовлетворяло требованиям гражданской авиации.

Ученые многих стран трудились над совершенствованием металлических материалов для авиастроения и технологии их изготовления. В СССР, одним из основоположников металлического самолетостроения стал знаменитый авиаконструктор Андрей Николаевич Туполев.

В 30-е годы прошлого столетия металл почти полностью вытеснил дерево в конструкции самолетов. Однако деревянные конструкции еще некоторое время применялись в отдельных случаях. В частности, в конструкциях советских истребителей Лагг-3, И-16, Як-1 и других, участвовавших в Великой Отечественной войне, использовались деревянные элементы. Это было сделано из соображений экономии, так как деревянные конструкции в изготовлении обходились дешевле металлических.

С появлением реактивной авиации в 50-х годах прошлого века, деревянные конструкции самолетов перестали использоваться.

Нагрузки, воздействующие на самолет

Чтобы понять, из чего делают самолеты, необходимо рассмотреть их отдельные конструктивные составляющие и выяснить, какие нагрузки приходятся на каждую из них. К основным частям конструкции самолета относятся:

  • фюзеляж;
  • крылья;
  • хвостовое оперение;
  • двигатель;
  • шасси.

Каждая из этих частей самолета имеет свое функциональное назначение. Фюзеляж самолета объединяет все элементы конструкции в единое целое. Крыло создает подъемную силу. Двигатели создают необходимую для полета тягу. Хвостовое оперение обеспечивает аэроплану горизонтальную и вертикальную управляемость. Шасси необходимы для совершения взлета и посадки.

В процессе полета и на земле все эти составные части самолета испытывают разнообразные, характерные только для них нагрузки.

Все нагрузки, которые приходится выдерживать самолету подразделяются:

  • нагрузки от воздействия набегающего потока воздуха при различных скоростях полета самолета и при его маневрах (подъемная сила и сила лобового сопротивления);
  • весовые нагрузки, за счет веса бортового оборудования, топлива, пассажиров, полезного груза, двигателей, шасси и др.;
  • инерционные нагрузки, связанные с инерцией, которую набирают элементы конструкции самолета и груз при изменении скоростей;
  • термические нагрузки, возникающие под воздействием скоростного напора воздуха, а также внутри работающего двигателя.

Для современных реактивных самолетов важна также и звуковая нагрузка, которая возникает при работе двигателя.

Потому как прилагаются эти нагрузки их можно подразделить на те, что влияют сразу на многие части самолета, и на те, что сосредоточены в определенном месте. Кроме того, есть нагрузки, которые действуют постоянно, с определенной динамикой или частотой.

Исходя из учета влияния указанных нагрузок на конкретные составные части самолета, выбираются материалы, из которых они изготавливаются. Однако, есть одно свойство, которое применимо ко всем без исключения материалам, это их максимально легкий вес при прочих равных достоинствах.

Материалы, из которых делают самолет

К основным материалам, из которых делаются самолеты, относятся различные металлы, их сплавы и композиционные материалы. Рассмотрим подробнее принципы работы с этими материалами.

Алюминий

Большая часть конструкции самолета изготавливается из алюминия и его сплавов. Он идеально для этого подходит, прежде всего, из-за своего небольшого веса, а также из-за широких возможностей менять свои свойства в сочетании с различными добавками.

Так, для изготовления планеров, подвергающимся небольшим аэродинамическим нагревам, используется дуралюмин, представляющий собой высокопрочный алюминиевый сплав с примесью меди, марганца и магния. Для температурно нагружаемых оболочек планера и силовых элементов скелета самолета используются сплавы алюминия повышенной жаропрочности, с добавлением магния. Такие сплавы также используются для изготовления отдельных элементов конструкции двигателя, работающих в умеренном тепловом режиме (лопатки, крыльчатки, диски компрессора первого контура).

Алюминиевые сплавы с добавлением кремния применяют для литья сложных по форме деталей, с небольшой нагруженностью. Эти сплавы обладают хорошей текучестью и заполняемостью в нагретом состоянии. Из них изготавливают: кронштейны, рычаги, фланцы. Их также используют для изготовления некоторых деталей двигателя: корпуса компрессоров, картеры, различные патрубки и др.

В общей сложности на алюминиевые конструкции самолета приходится до 80% от его общей массы.

Титан

Титан и титановые сплавы представляет особый интерес в авиастроении, в первую очередь, из-за своих возможностей выдерживать высокие температуры.

Из титана изготавливаются корпуса сверхзвуковых самолетов, передние края крыльев и стабилизаторов. Титановые сплавы широко применяются в конструкциях шасси, узлах крепления закрылков, в силовых элементах. В реактивных двигателях из титана изготавливаются детали, подвергающиеся высокотемпературным нагрузкам: лопатки компрессоров и диски компрессоров второго контура, кожухи камер сгорания, сопла реактивных двигателей.

Сталь

Сталь представляет собой сплав железа и углерода. Она довольно широко используется при изготовлении самолетов. В авиации в основном применяется конструкционная сталь с содержанием от 0,05 до 0,55% углерода. Из стали изготавливают отдельные элементы силового набора конструкции, детали шасси, болты, заклепки. Жаропрочная сталь идет на изготовление обшивок самолетов, развивающих большие скорости.

Композиционные материалы

Широкое применение при производстве самолетов нашли композиционные материалы (композиты), представляющие собой основу и распределенные в ней армирующие материалы. В качестве армирующих материалов используются органические волокна, а в качестве основы - различные металлические сплавы.

Детали, изготовленные из композитов, обладают небольшим весом, могут выдерживать высокие температуры. Их используют для изготовления обшивок крыла, оперения, створок шасси, радиопрозрачных обтекателей и др.

При рассмотрении материалов, из которых делаются самолеты нельзя забывать и о таких важных материалах, как резина и пластмассы. Резина применяется при изготовлении колес шасси, трубопроводов, шлангов, прокладок, уплотнителей, амортизаторов. Различные по своим свойствам пластмассы применяются для изготовления силовых элементов конструкции самолета, остекления кабины пилота, декоративной отделки пассажирского салона, в качестве электро- и теплоизоляции. Химически стойкие пластмассы используются для изготовления топливных баков.

Пожалуй, мы рассмотрели все основные наиболее используемые для производства самолетов материалы. То, из какого металла делают самолеты, во многом отражается и на их летных возможностях. Так, легкие алюминиевые сплавы используются для производства планеров дозвуковых самолетов, титан и сталь – для достижения сверхзвуковых и гиперзвуковых скоростей.

Для всех авиационных материалов важной характеристикой является их технологичность, то есть способность их изготовления серийно, а не только в одном экземпляре. Самолеты производятся большими партиями, все их детали изготавливаются многократно. В ходе повторяющегося процесса изготовления они не должны терять своих основных свойств.

Для этого разрабатываются специальные технологические процессы, которые представляют собой последовательные изменения свойств материала на различных этапах его производства, вплоть до его получения с заданными свойствами. Все основные технологические процессы по изготовлению материалов для самолетов стандартизированы, что гарантирует их производство с одинаковыми свойствами. Изготовление авиационных материалов, основных конструктивных частей самолета и его окончательная сборка производятся на авиастроительных заводах.

Основные авиазаводы России

Чтобы увидеть, где в России делают самолеты, нужно открыть карту. География расположения авиазаводов на территории России представлена весьма разнообразно, от западных границ до Дальнего Востока.

Иркутский авиационный завод

В Южном административном округе, в Ростове –на-Дону и в Таганроге производят вертолеты Ми-26, Ми-28, Ми-35, самолеты-амфибии Бе-200. В Московской области – МиГ-29, Ил-103. В Центральной части России, в Воронежской и Смоленской областях - Ил-96-300, Ан-148, Ил-96-400, Ил-112, Як-18Т, СМ-92Т. На Волге расположены заводы по производству Ан-140,Ту-204, Ил-76, Ан-140, МиГ-29, МиГ-31, МиГ-35. В Республике Татарстан делают Ту-214, Ансат, Ми-17, Ми-38. В Сибири - Су-34, Су-30, Як-130, МС-21, Як-152, Су-25УБ, Су-25УБМ, Ми-8АМТ, Ми-171, Ми-171А2, Ми-8АМТШ. В республике Башкортостан – Ка-226, Ка-27, Ка-31, Ка-32. На Дальнем Востоке расположено производство Сухой Суперджет-100, Су-27, Су-30, Су-33, Су-35, Т-50 (ПАК ФА) и вертолетов Ка-52, Ка-62.

Резюме

Широта представленных авиазаводов по территории России, а также номенклатура изготавливаемой техники, говорит о развитом авиастроительном производстве России. Основы его были заложены знаменитыми учеными, конструкторами и инженерами прошлого века. В наше время новое поколение разработчиков авиационной техники успешно продолжает начатое ими дело. Иллюстрацией этому служат новые российские разработки самолетов и вертолетов, признанные во всем мире.

Вконтакте