Ремонт и отделка

Воздушно-механической пены. Проверка качества пенообразователей и определение кратности пены Кратность пены формула

Тема Назначение виды и устройство оборудования для получения воздушно-механической пены

Вид занятия : классно-групповое

Отводимое время : 1 учебный час.

Литература: учебник «Пожарная техника»

Развернутый план занятий.

Пенообразователи общего назначения изготовляются на основе дешевого и доступного сырья. Используются для получения пены и растворов смачивателей.

Предназначены для тушения пожаров нефтепродуктов, дерева, ткани, бумаги, торфа, хлопка, каучука, пластмасс и т.д. Служат для получения пены низкой, средней кратности и высокой.

К ним относятся:

  • ТЭАС – А

Преобразователи целевого назначения

Пенообразователи целевого назначения используются для получения пены, при тушении пожаров нефтепродуктов и различных классов горючих жидкостей наиболее пожароопасных объектов, а также для применения с морской водой, при низкой температуре и других особых условиях. Некоторые из них изготавливаются на основе дефицитного дорогостоящего сырья.

К ним относятся:

    Пленкообразующий

  • Универсальный

Физико-химические и огнетушащие свойства пен.

Огнетушащие пены разделяются на химическую и воздушно - механическую.

Химическая пена (кратность до 6)получают в результате химической реакции между кислой и щелочной частями:

Fe2(S04)3+6NaHC03-)-3Na2S04+2Fe(OH)3+6C02

H 2 S 04+2 NaHC 03-> Na 2 S 04+2 C 02+2 H 20

Воздушно - механическая пена получается путем механического перемещения трех компонентов: воды, пенообразователя и воздуха.

Согласно ГОСТ 12.1.114-82 ВМП подразделяется на три вида:

    ВМП низкой кратности К<20 (для расчетов К=10) ВМП

    средней кратности 20^К^200 (для расчетов К=100)

    ВМП высокой кратности К>200 (для расчетов К=1000)

Физико-химические и огнетушащие свойства пен и область их применения .

Огнетушащие пены представляют собой совокупность пузырьков ,

состоящих из

жидкостной оболочки, заполненной воздухом или газами, т.е. пена - это

концентрированная эмульсия газа и в жидкости.

Химическая пена состоит на 80% С02 (углекислого газа) , 19,7% водного раствора и 0,3% пенообразующих веществ.

ВМП состоит из 83-99,6% воздуха и 0,4-17% водного раствора ПО.

Основными свойствами пен независимо от способа их получения являются следующие:

1. Кратность пены - это отношение объема пены к объему пенообразующей жидкости. Кратность зависит от типа, качества и концентрации ПО в воде, от конструкции пенного прибора, от напора перед распылителем и от температуры подсасываемого воздуха.

2. Стойкость пены - это способность противостоять разрушению в течении определенного времени. Стойкость пены - это время в течении которого пена разрушается на 50% первоначального объема. Стойкость зависит: от вида ПО, свойств и температуры веществ, с которыми она взаимодействует, способа подачи, высоты пенного слоя. т=3,8-18мин (САМПО - несколько часов)

3. Высокая теплоемкость - пена, разрушаясь, охлаждает горящие вещества (строительные конструкции, ЛВЖ и ГЖ) за счет имеющегося в ее структуре водного раствора пенообразователя.

4. Небольшая плотность 4-170 кг/м 3 . Плотность зависит от кратности пены, Пена плавает на поверхности жидкостей, не создает чрезмерной нагрузки на покрытия, исключает потерю устойчивости судна при тушении пожаров.

5. Низкая теплопроводность - она близка к теплопроводности неподвижных газов. Это позволяет использовать пену в качестве теплоизоляционного экрана от действия лучистой энергии.

6.Изолирующая способность - при тушении пеной, слой пены препятствует проникновению паров в зону горения и тепла из зоны горения к поверхности вещества.

7. Вязкост ь - способность пены к растеканию.

8. Дисперстность - степень измельчения т.е. размеры пузырьков. С увеличением дисперстности пены, растет время ее существования, вязкость и парогазонепроницаемость.

Способ получения пен и предназначение для пожаротушения:

    Пена низкой кратности – стволы СВЭ; СВПЭ; ОРТ-50 с насадкой – тушение хлопка и родственных веществ, так же применяется для тушения резина образных изделий и паралона.

    Пена средней кратности – ГПС-600; ГПС-800; ГПС – 2000 – тушение ЛВЖ.

    Пена высокой кратности - получается ТОЛЬКО при помощи пожарного дымососа. Тушение объемных пожаров (подвалы). В этой пене можно дышать .

Схемы боевого развертывания с подачей ВМП

3.2.1. Определение тактических возможностей подразделений без установки машин на водоисточники . Без установки на водоисточни­ки используются пожарные машины, которые вывозят на пожары запас воды, пенообразователя и других огнетушащих средств. К ним относятся пожарные автоцистерны, пожарные автомобили аэро­дромной службы, пожарные поезда и др.

Руководитель тушения пожара должен не только знать возмож­ности подразделений, но и уметь определять основные тактические показатели:

· время работы стволов и пеногенераторов;

· возможную площадь тушения воздушно-механической пеной;

· возможный объем тушения пеной средней кратности при имею­щемся на машине пенообразователе или растворе.

Время работы водяных стволов от пожарных машин без установки их на водоисточники определяют по формуле:

t = (V ц - N р V р)/N ст Q ст 60, (3.1)

где t - время работы стволов, мин; V ц - объем воды в цистерне пожарной машины, л; N р - число рукавов в магистральной и рабочих линиях, шт.; V р – объем воды в одном рукаве, л (см. п. 4.2); N ст - число водяных ство­лов, работающих от данной пожарной машины, шт; Q ст - расход воды из стволов, л/с (см. табл. 3.25 - 3.27).

Время работы пенных стволов и генераторов пены средней крат­ности определяют:

t = (V р-ра - N р V р)/N СВП(ГПС) Q СВП(ГПС) 60, (3.2)

где V р-ра - объем 4 или 6 %-ного раствора пенообразователя в воде, полу­чаемый от заправочных емкостей пожарной машины, л; N СВП(ГПС) - число воздушно-пенных стволов (СВП) или генераторов пены средней крат­ности (ГПС), шт.; Q СВП(ГПС) - расход водного раствора пенообразовате­ля из одного ствола (СВП) или генератора (ГПС), л/с (см. табл. 3.32).

Объем раствора зависит от количества пенообразователя и воды в заправочных емкостях пожарной машины. Для получения 4 %-ного раствора необходимы 4 л пенообразователя и 96 л воды (на 1 л пенообразователя 24 л воды), а для 6 %-1ного раствора 6 л пенооб­разователя и 94л воды (на 1л пенообразователя 15,7л воды). Со­поставляя эти данные, можно сделать вывод, что в одних пожарных машинах без установки на водоисточники расходуется весь пенообразователь, а часть воды остается в заправочной емкости, в дру­гих вода полностью расходуется, а часть пенообразователя остается.

Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразова­тель. Для этой цели количество воды. приходящееся на 1 л пено­образователя в растворе, обозначим К в (для 4 %-ного раствора ра­нен 24 л, для 6 %-ного - 15,7). Тогда фактическое количество воды,

приходящееся на 1 л пенообразователя, определяют по формуле:

К ф = V ц /V по (3.3)

где V ц - объем воды в цистерне пожарной машины, л; V по - объем пено­образователя в баке пожарной машины, л.

Фактическое количество воды К ф, приходящееся на 1 л пено­образователя, сравниваем с требуемым К в. Если К ф >К в, то пено­образователь, находящийся на одной машине, расходуется полностью, а часть воды остается. Если К ф <К в, тогда вода в емкости машины расходуется полностью, а часть пенообразователя остается.

Количество водного раствора пенообразователя при полном расходе воды, находящейся на пожарной машина определяют по фор­муле:

V р-ра = V ц / К в +V ц (3.4)

где V р-ра - количество водного раствора пенообразователя, л.

При полном израсходовании пенообразователя данной пожарной машины количество раствора определяют по формуле:

V р-ра = V по К в +V по (3.5)

где V по - количество пенообразователя на машине, л.

Возможную площадь тушения легковоспламеняющихся и горючих жидкостей определяют по формуле:

S т = V р-ра /I s т t р 60 (3.6)

где S т - возможная площадь тушения, м 2 ; I s т - нормативная интенсивность подачи раствора на тушение пожара, л/(м 2 ·с) (см. табл. 2.11); t р - расчетное время тушения, мин (см. п. 2.4).

Объем воздушно-механической пены низкой и средней кратности определяют по формулам:

V п = V р-ра К; V п = V п К п (3.7)

Где V п - объем пены, л; К - кратность пены; V п - количество пенообразо­вателя на машине или расходуемая часть его, л; К п - количество пены, полу­чаемой из 1 л пенообразователя, л (для 4 %-ного раствора составляет 250 л, для 6 %-ного-170 л при кратности 10 и соответственно 2500 и 1700 при крат­ности 100).

Объем тушения (локализации) воздушно-механической пеной средней кратности определяют по формуле

V т = V п /К з (3.8)

где V т - объем тушения пожара; V п - объем пены, м 3 ; К з - коэффициент запаса пены, учитывающий ее разрушение и потери. Он показывает, во сколько раз больше необходимо взять пены средней кратности по отношению к объему тушения; К з =2,5 - 3,5.

Примеры. Обосновать тактические возможности отделения воо­руженного АЦ-40(131)137 без установки ее на водоисточник.

1. Определяем время работы двух водяных стволов с диаметром насадка 13 мм при напоре 40 м, если до разветвления проложен один рукав диаметром 77 мм, а рабочие линии состоят из двух ру­кавов диаметром 51 мм к каждому стволу:

t = (V ц - N р V р)/N ст Q ст 60 = 2400 - (1´90 + 4´40)/(2´3,7´60) = 4,8 мин.

2. Определяем время работы ценных стволов и генераторов. Для этой цели необходимо паГгги объем водного раствора пенообразова­теля, который можно получить от АЦ-40(131) 137

К ф = V ц /V по = 2400/150 = 16 л.

Следовательно, К ф = 16 >К в = 15,7 при 6 %-ном растворе. По­этому объем раствора определим по формуле:

V р-ра = V по К в +V по =150 ´ 15,7 +150 = 2500 л

Определяем время работы одного пенного ствола СВП-4, если напор у ствола 40 м, а рабочая линия состоит из двух рукавов диа­метром 77 мм:

t = (V р-ра - N р V р)/N СВП Q СВП 60 = (2500 - 2´90)/1´8´60 = 4,8 мин.

Определяем время работы одного ГПС-600, если напор у гене­ратора 60 м, а рабочая линия состоит из двух рукавов диаметром 66 мм:

t = (V р-ра - N р V р)/N ГПС Q ГПС 60т = (2500 - 2´7)/1´6´60 = 6,5 мин.

3. Определяем возможную площадь тушения легковопламеняю­щихся и горючих жидкостей при следующих условиях:

при тушении бензина воздушно-механической пеной средней кратности I s = 0,08 л/(м 2 ·с) и t р = 10 мин (см. пп. 2.3 и 2.4):

S т = V р-ра /I s t р 60 = 2500/0,08´10´60 = 52 м 2 ;

при тушении керосина воздушно-механической пеной средней кратности (I s = 0,05 л/(м 2 ·с) и t р = 10 мин, см. табл. 2.10 и п. 2.4)

S т = V р-ра /I s t р 60 = 2500/0,05´10´60 = 83 м 2 ;

при тушении масла воздушно-механической пеной низкой крат­ности (I s = 0,10 л/(м 2 ·с) и t р = 10 мин, см. табл. 2.10 и п. 2.4)

S т = V р-ра /I s t р 60 = 2500/0,1´10´60 = 41 м 2 .

4. Определяем возможный объем тушения (локализации) пожара пеной средней кратности (К =100). Для этой цели по формуле (3.7) определим объем пены:

V п = V р-ра К = 2500´100 == 250000 л или 250 м 3 .

Из условий тушения (планировки помещения, подачи ионы. нор­мативного времени тушения, плотности горючей нагрузки, возмож­ности обрушения и т.д.) принимаем значение Кз""9^ Тогда объем тушения (локализации) будет равен:

V п = V п /К з = 250/3 = 83 м 3 .

Из приведенного примера следует, что отделение, вооруженное АЦ-40(131)137 без установки машины на водоисточник, может обес­печить работу одного ствола Б в течение 10 мин, двух стволов Б или одного А в течение 5 мин, одного пенного ствола СПВ-4 в течение 4 - 5 мин, одного генератора ГПС-600 в течение 6 - 7 мин, ликвидировать горение бензина пеной средней кратности на площади до 60 м 2 , керосина - до 80 м 2 и масла пеной низкой кратности - до 40 м 2 , потушить (локализовать) пожар пеной средней кратности в объеме 80 - 100 м 3 .

Кроме указанных работ по тушению пожара, не задействован­ная часть личного состава отделения может выполнить отдельные работы по спасанию людей, вскрытию конструкций, эвакуации материальных ценностей, установке лестниц и др.

3.2.2. Определение тактических возможностей подразделений с установкой их машин на водоисточники. Подразделения, вооружен­ные пожарными автоцистернами, осуществляют боевые действия на пожарах с установкой машин на водоисточники в случаях, когда водоисточник находится рядом с горящим объектом (примерно до 40 - 50 м), а также когда запаса огнетушащих средств, вывозимых на машине, не достаточно для ликвидации пожара и сдерживания распространения огня на решающем направлении. Кроме того, с водоисточников работают подразделения на автоцистернах после израсходования запаса огнетушащих средств, а также по распоряжению руководителя тушения пожара, когда они прибывают на пожар по дополнительному вызову. Пожарные автонасосы, насосно-рукавные автомобили, пожарные насосные станции, мотопомпы и другие пожарные машины, которые не доставляют на пожар запас воды, устанавливаются на водоисточники во всех случаях.

При установке пожарных машин на водоисточники тактические возможности подразделений значительно возрастают. Основными по­казателями тактических возможностей подразделений с установкой машин на водоисточники являются: предельное расстояние по подаче огнетушащих средств, продолжительность работы пожарных стволов и генераторов на водоисточниках с ограниченным запасом воды, воз­можные площадь тушения горючих жидкостей и объем в здании при заполнении его воздушно-механической пеной средней кратности.

Предельным расстоянием по подаче огнетушащих средств на пожарах считают максимальную длину рукавных линий от пожар­ных машин, установленных на водоисточники, до разветвлений, рас­положенных у места пожара, или до позиций стволов (генераторов), поданных на тушение. Число водяных и пенных стволов (генераторов), подаваемых отделением на тушение пожаров, зависит от пре­дельного расстояния, численности боевого расчета, а также от сложившейся обстановки.

Для работы со стволами в различной обстановке требуется не­одинаковое количество личного состава. Так, при подаче одного ствола Б на уровне земли необходим один человек, а при подъеме его на высоту - не менее двух. При подаче одного ствола А на уровне земли нужно два человека, а при подаче его на высоту или при работе со свернутым насадком - не менее трех человек. Для подачи одного ствола А или Б в помещения с задымленной или от­равленной средой требуется звено газодымозащитников и пост без­опасности, т. е. не менее четырех человек и т. д. Следовательно, чис­ло приборов тушения, работу которых может обеспечить отделение, определяется конкретной обстановкой на пожаре.

Предельное расстояние для наиболее распространенных схем боевого развертывания (см. рис. 3.2) определяют по формуле:

l пр = ´20, (3.9)

где l пр - предельное расстояние, м; H н - напор на насосе, м; H пр - на­пор у разветвления, лафетных стволов и пеногенераторов. м (потери напора в рабочих линиях от разветвления в пределах двух -трех рукавов во всех случаях не превышает 10 м, поэтому напор у разветвления следует прини­мать на 10 м больше, чем напор у насадка ствола, присоединенного к данно­му разветвлению); ± Z м - наибольшая высота подъема (+) или спуска (-) местности на предельном расстоянии, м; ± Z пр - наибольшая высота подъе­ма или спуска приборов тушения (стволов, пеногенераторов) от места уста­новки разветвления или прилегающей местности на пожаре, м; S - сопротивление одного пожарного рукава (см. табл. 4.5); Q 2 - суммарный расход воды одной наиболее загруженной магистральной рукавной линии, л/с; SQ 2 - по­тери напора в одном рукаве магистральной линии, м (приведены в табл. 4.8).

Полученное расчетным путем предельное расстояние по подаче огнетушащих средств, следует сравнить с запасом рукавов для магистральных линий, находящихся на пожарной машине, и с учетом этого откорректировать расчетный показатель. При недостатке ру­кавов для магистральных линий на пожарной машине необходимо организовать взаимодействие между подразделениями, прибывшими к месту пожара, обеспечить прокладку линий от нескольких подраз­делений и принять меры к вызову рукавных автомобилей.

Продолжительность работы приборов тушения зависит от запа­са воды в водоисточнике и пенообразователя в заправочной емкости пожарной машины. Водоисточники, которые используют для тушения пожаров, условно подразделяются на две группы: водоисточники с неограниченным запасом воды (реки, крупные водохранилища, озе­ра, водопроводные сети) и водоисточники с ограниченным запасом воды (пожарные водоемы, брызгательные бассейны, градирни, водо­напорные башни и др.).

Продолжительность работы приборов тушения от водоисточников с ограниченным запасом воды определяют по формуле:

t =0,9 V в /N пр Q пр 60, (3.10)

где V в - запас воды в водоеме, л; N пр - число приборов (стволов, генера­торов), поданных от всех пожарных машин, установленных на донный водо­источник; Q пр - расход воды одним прибором, л/с.

Продолжительность работы пенных стволов и генераторов зависит не только от запаса воды в водоисточнике, но и от запаса пенообразователя в заправочных емкостях пожарных машин или до­ставленного на место пожара. Продолжительность работы пенных стволов и генераторов по запасу пенообразователя определяют по формуле;

t = V по /N СВП(ГПС) Q СВП(ГПС) 60, (3.11)

где V по - запас пенообразователя в заправочных емкостях пожарных машин. л; N СВП(ГПС) - число пенных стволов или генераторов, поданных от одной пожарной машины, шт.; Q СВП(ГПС) – расход пенообразователя одним пенным стволом или генератором, л/с.

По формуле (3.11) определяют время работы пенных стволов и генераторов от пожарных автоцистерн без установки их на водоисточники, когда количество воды на машине достаточно для пол­ного расхода пенообразователя, находящегося в баке.

Возможные площади тушения легковоспламеняющихся и горю­чих жидкостей при установке пожарных машин на водоисточники определяют по формуле (3.6). Вместе с тем надо помнить, что объем раствора определяют с учетом израсходования всего пенообразо­вателя из пенобака пожарной машины по формуле (3.5) или

V р-ра = V по К р-ра,(3-12)

где К р-ра - количество раствора, получаемого из1 л пенообразователя (К р-ра = К + 1 при 4 %-ном растворе К р-ра = 25 л, при 6 %-ном К р-ра = 16,7л)

Возможный объем тушения пожара (локализации) определяют по формуле (3.8). При этом количество раствора находят по фор­мулам (3.5) или (3.12), а объем пены - по (3.7).

Для ускоренного вычисления объема воздушно-механической пены низкой и средней кратности, получаемой от пожарных машин с установкой их на водоисточник при расходе всего запаса пенооб­разователя, используют следующие формулы.

При тушении пожара воздушно-механической пеной низкой кратности (К = 10), 4- и 6 %-ном водном растворе пенообразователя:

V п = V по /4 и V п = V по /6, (3.13)

где V п - объем пены, м 3 ; V по - объем пенообразователя пожарной маши­ны, л; 4 и 6 - количество пенообразователя, л, расходуемого для получения 1 м 3 пены соответственно при 4- и 6 %-ном растворе.

При тушении пожара воздушно-механической пеной средней кратности (К = 100), 4- и 6 %-ном водном растворе пенообразова­теля

V п = (V по /4)´10 и V п = (V по /6)´10, (3.14)

Примеры. Обосновать основные тактические возможности отделения, вооруженного насосно-рукавным автомобилем АНР-40(130) 127А.

1. Определить предельное расстояние по подаче одного ствола А с диаметром насадка 19 мм и двух стволов Б с диа­метром насадка 13 мм, если напор у стволов 40 м, а максимальный подъем их 12 м, высота подъема местности составляет 8 м, рукава прорезиненные диаметром 77 мм:

l пр = ´20 = ´20 =180 м.

Полученное предельное расстояние сравним с числом рукавов на АНР-40(130) 127А (33 рук. ´ 20 м = 660 м).

Следовательно, отделение, вооруженное АНР(130)127А, обес­печивает работу стволов по указанной схеме, так как число рукавов, имеющихся на машине, превышает предельное расстояние по расчету.

2. Определить продолжительность работы двух стволов А с диамет­ром насадка 19 мм и четырех стволов Б с диаметром насадка 13 мм при напоре у стволов 40 м, если АНР-40(130)127А установлен на водоем с запасом воды 50 м3:

t =0,9 V в /N пр Q пр 60 = 0,9 ´ 50´1000/(2´7,4+4´3,7) ´60 = 25 мин.

3. Определить продолжительность работы двух ГПС-600 от АНР-40(130)127А, установленного на реку, если напор у генерато­ров 60 м.

По табл. 3.30 находим, что один ГПС-600 при напоре 60м рас­ходует пенообразователя 0,36 л/с

t = V по /N ГПС Q ГПС 60 = 350/2´0,36´60 = 8,1 мин.

4. Определить возможную площадь тушения горючих жидкостей воз­душно-механической пеной низкой кратности. Для этой цели необ­ходимо найти 6 %-ный объем раствора по формуле (3.5)

V р-ра = V по К в +V по = 350´15,7+350=5845 л;

S т = V р-ра /I s t р 60 = 5845/(0,15´10´60) = 66 м 2 .

5. Определить возможную площадь тушения керосина пеной сред­ней кратности

S т = V р-ра /I s t р 60 = 5845/(0,15´10´60) = 195 м 2 .

в. Определить возможную площадь тушения бензина воздушно-ме­ханической пеной средней кратности

S т = V р-ра /I s t р 60 = 5845/(0,08´10´60) = 120 м 2 .

7. Определить возможный объем тушения (локализации) воздушно-механической пеной средней кратности, если использовался 4 %-ный раствор пенообразователя при коэффициенте заполнения К 3 = 2,5. Определяем объем раствора и объем пены

V р-ра = V по К в +V по = 350´24 + 350 = 8750 л;

V п = V р-ра К = 8750´100 = 875000 л или 875 м 3 ;

V т = V п /К = 875/2,5 = 350 м 3 .

Следовательно, отделение, вооруженное АНР-40(130)127А, при установке машины на водоисточник может обеспечить работу руч­ных и лафетного стволов, одного - двух ГПС-600 или СВП-4 в те­чение 16 - 8 мин, потушить горючую жидкость воздушно-механической пеной низкой кратности на площади до 65 м 2 , а пеной средней кратности на площади до 200 м 2 , ликвидировать горение легковос­пламеняющейся жидкости пеной средней кратности до 120 м 2 и ликвидировать (локализовать) пожар пеной средней кратности при 4 %-ном растворе пенообразователя в объеме до 350 м 3 .

Таким образом, зная методику обоснования тактических воз­можностей пожарных подразделений с установкой пожарных машин на водоисточники, можно заблаговременно определить возможный объем боевых действий на пожаре и организовать успешное их осу­ществление.

Определение площади тушения ЛВЖ и ГЖ от заправочных емкостей пожарных машин.

Объем воздушно-механической пены, получаемой от заправочных емкостей пожарной машины.

Определяется по трем параметрам:

а) По кратности пены

V п = V р-ра · К, л; м 3 (18)

где: К – кратность пены;

V р-ра – объем водного раствора пенообразователя, получаемого от заправочных емкостей пожарной машины, л.

б) По расходу воды

Для пены низкой кратности

V п = V ц /94, л, м 3 (19)

94 – количество воды, расходуемой для получения 1м 3 пены низкой кратности, л.

Для пены средней кратности

V п = (V ц / 94) ·10, л, м 3 20)

где: V ц – объем воды в емкости цистерны, л;

94 – количество воды, расходуемой для получения 10 м 3 пены средней кратности, л.

в) По расходу пенообразователя

Для пены низкой кратности

V п = V по /6, л, м 3 (21)

6 – количество пенообразователя, расходуемого для получения 1м 3 пены низкой кратности (при 6% водном растворе пенообразователя), л.

Для пены средней кратности

V п = (V по /6) 10, л, м 3 (22)

где: V по – объем пенообразователя в пенобаке пожарной машины, л;

6 – количество пенообразователя, расходуемого для получения 10м 3 пены средней кратности (при 6% водном растворе пенообразователя), л.

S т = V р-ра / (I тр · τ раб · 60), м 2 (23)

где: V р-ра – объем водного раствора пенообразователя, получаемого от заправочных емкостей пожарной машины;

I тр – требуемая интенсивность подачи водного раствора на тушение пожара, л/(м 2 ·с);

τ раб – время работы прибора подачи пены от пожарной машины, мин.

V т = V п / К з, м 3 (24)

где: V т – объем тушения пожара;

V п – объем пены, который можно получить от заправочных емкостей пожарной машины, м 3;

К з – коэффициент запаса пены, учитывающий ее разрушение и потери (К з = 2,5-3,5).

Вывод: основная обязанность лиц среднего и старшего начальствующего состава – знать тактические возможности пожарных подразделений и уметь определять их основные показатели без этого не возможно руководство тушением пожара и выполнение функций РТП.

Заключительная часть

Преподаватель выдает задание на практическое занятие, отвечает на возникшие у обучаемых вопросы. Выборочно проверяет конспекты.

VI. Задание на самостоятельную работу

Изучить: классификацию подразделений пожарной охраны. Понятие о тактических возможностях пожарных подразделений. Факторы, определяющие тактические возможности подразделений по видам действий по тушению пожара и проведению АСР. Ос­новные показатели, характеризующие тактические возможности под­разделений (продолжительность подачи огнетушащих веществ, предельные расстояния подачи средств тушения и специального оборудования), и их расчет.



Назначение, использование отделений на основ­ных и специальных пожарных машинах при работе на пожарах. Схемы развертывания на основных и специальных автомобилях.

VII. Задание на самостоятельную подготовку

Определить расчетные расходы пенообразователя и воды, тип и количест­во пеногенераторов при тушении пожара пеной средней кратности в резервуаре в зависимости от их конструкции, а также пеной низкой кратности, подаваемой в слой нефтепродукта .

Исходные данные:

Резервуар вместимостью 10000 м 3 со стационарной крышей (СК) или ре­зервуар с понтоном (СП), или резервуар с плавающей крышей (ПК);

Хранимый нефтепродукт - нефть с температурой вспышки менее 28 °С;

Жесткость воды для приготовления раствора пенообразователя до 10 мг·экв/л;

Марка пенообразователя для тушения пеной средней кратности - ПО-1Д, для тушения пеной низкой кратности подаваемой в слой продукта - ФОРЕТОЛ.

Пена средней кратности

По табл. 4.1., в зависимости от марки пенообразователя (ПО - 1Д), опреде­ляем нормативную интенсивность подачи раствора - 0,08 л/(с·м 2). В зависимо­сти от жесткости воды (до 10 мг·экв/л) определяем рабочую концентрацию пе­нообразователя в растворе - 6%.

Для наземных резервуаров СК и СП по табл. 4.2. определяем:

Тип пеногенераторов - ГПСС - 2000;

Для наземного резервуара с ПК по табл. 4.3. определяем:

Расчетный расход раствора пенообразователя - 24 л/с;

Тип пеногенераторов - ГПС - 600;

Количество пеногенераторов - 4 шт.

Пена низкой кратности

По таблице 4.4. определяем нормативную интенсивность подачи раствора - 0,08 л/(с·м 2).

В зависимости от жесткости воды (до 10 мг·экв/л) определяем рабочую концентрацию пенообразователя в растворе - 5%.

Для наземных резервуаров по таблице 17. определяем:

Расчетный расход раствора пенообразователя - 60 л/с;

Тип пеногенераторов - ВПГ - 20;

Количество пеногенераторов - 3 шт.

Таблица 4.1

Определение рабочей концентрации пенообразователя в растворе

Вид нефтежидкости Нормативная интенсивность подачи раствора в зависимости от вида ПО,л/c·м 2 Рабочая концентрация ПО в зависимости от вида воды
ПО общего назначения ПО специального назначения
ПО-1 ПО-6 ПО-1Д ПО -ЗАИ ТАЭС САМПО Фторсинтетические ПО: форетол универсальный подслойный
при подаче на пов-ть неф-та при подаче в слой неф-та
Жесткость воды, (мг·экв)/л
до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30
Пена средней кратности Пена низ-й кр-ти
Нефть и др. неф-ты с температурой вс­пышки менее 28°С 0,08 0,08 0,08 0,065 0,04 0,08
- - -
Бензины 0,08 0,06 0,06 0,06 0,04 0„08
- - -
Нефть и др. неф-ты с температурой вспышки более 28°С 0,05 0,05 0,05 0,04 - 0,06
- - - - -
Нефть в смеси с газовым конденса­том до 5 0,12 0,12 0,12 0,09 0,04 0,1
- - -

Таблица 4.2

Определение расчетного расхода раствора пенообразователя и количества ГПС (ГПСС) для тушения резервуаров

Защищаемая площадь, м 2 Номинальный объем наземного резервуара СК и СП, м 3 Расчетный расход раствора ПО, л/(с·м 2). Количество ГПС (ГПСС), шт.
Интенсивность подачи раствора ПО, л/(с·м 2).
0,04 0,05 0,06 0,065 0,08 0,09 0,1 0,12
До 50 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) ---
50 – 100 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) ---
100 – 150 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) ---
150 – 200 12 (2) --- 12 (2) --- 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2)
200 – 250 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2)
250 – 300 12 (2) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2)
300 – 350 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 36 (6) 40 (2) 42 (7) 60 (3)
350 – 400 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3)
400 – 450 18 (3) --- 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 60 (3) 48 (8) 60 (3) 54 (9) 60 (3)
450 – 500 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3) 54 (9) 60 (3) 60 (10) 60 (3)
500 – 600 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3) 54 (9) 60 (3) 60 (10) 60 (3) --- 80 (4)
600 – 700 30 (5) 40 (2) 36 (6) 40 (2) 48 (8) 60 (3) 48 (8) 60 (3) 60 (10) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5)
700 – 1000 42 (7) 40 (2) 48 (8) 60 (3) 60 (10) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5) --- 100 (5) --- 120 (6)
1000 – 1300 54 (9) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5) --- 120 (6) --- 120 (6) --- 140 (7) --- 160 (8)
1300 – 1600 --- 80 (4) --- 80 (4) --- 100 (5) --- 120 (6) --- 140 (7) --- 160 (8) --- 160 (8) --- 200(10)
1600 – 2000 --- 80 (4) --- 100 (5) --- 120 (6) --- 140 (7) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12)
2000 – 2500 --- 100 (5) --- 140 (7) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12) --- 260(13) --- 300(15)
2500 – 3000 --- 120 (6) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12) --- 280(14) --- 300(15) --- 360(18)

Примечания: 1. В скобках приводятся расчетные данные по количеству ГПС для тушения резервуаров.

2. В числителе дроби приводятся данные для ГПС - 600, в знаменателе для ГПС - 2000

Таблица 4.3

Определение расчетного расхода раствора пенообразователя и количества ГПС для тушения резервуаров с плавающей крышей

Номинальный объем резервуара ПК,м 3 Периметр ре­зервуара ПК,м 3 Расчетный расход раствора ПО, л/с Количество ГПС, шт
2 (4)
2 (12)
2 (4)
2 (12)
3 (6)
3 (18)
3 (6)
3 (18)
4 (8)
4 (24)
-
5 (30)
-
6 (36)
-
8 (48)
-
8 (48)
-
11 (66)

Примечания:

1. В скобках приводятся расчетные данные по расходу раствора понеообразователя для тушения резервуаров с плавающей крышей.

2. В числителе дроби приводятся данные для ГПС - 200, в знаменателе для ГПС -600.

3. Количество ГПС, приведенных в таблице, является минимальным" не зависимо от площади тушения пожара.

Таблица 4.4

Определение расчетного расхода фторсинтетического пенообразователя и ко­личества пеногенераторов типа ВПГ при подаче низкократной пены в слой

нефтепродукта

Защищаемая площадь ре­зервуара, м 2 Номинальный объем резер­вуара СК и СП, м 3 Расчетный расход раствора ПО, л/(с·м) Количество ВПГ, шт
Интенсивность подачи раствора, л/(с·м)
0,06 0,08 0,1
До 50 20 (2) --- 20 (2) --- 20 (2) ---
50 – 100 20 (2) --- 20 (2) --- 20 (2) ---
20 (2) --- 20 (2) --- 20 (2) ---
20 (2) --- 30 (3) 40 (2) 30 (3) 40 (2)
30 (3) 40 (2) 30 (3) 40 (2) 40 (4) 40 (2)
41 (4) 40 (2) 60 (6) 60 (3) 70 (7) 80 (4)
80 (8) 80 (4) 110 (11) 120 (6) 130 (13) 140 (7)
100 (10) 100 (5) 140 (14) 140 (7) 170 (17) 180 (9)
160 (16) 160 (8) 210 (21) 220 (11) 260 (26) 260 (13)
180 (18) 180 (9) 240 (24) 240 (12) 290 (29) 300 (15)

Примечание:

1 .В скобках приводятся расчетные данные по количеству ВПГ для тушения резервуа­ров.

2.В числителе и знаменателе дроби приводятся данные соответственно для ВПГ - 10 и ВПГ - 20.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению
в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 2.36).


Рис. 2.36. Классификация пенных пожарных стволов

Пенный ствол – устройство для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности, устанавливаемое на конце напорной линии.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы (СВП) и стволы воздушно-пенные с эжектируемым устройством (СВПЭ). Они имеют одинаковое устройство и отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 2.37) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола
к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена направляющая труба 5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6 , вакуумная 3 и выходная 4 . На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола
не менее 600 мм рт. ст. (0,08 МПа).

Рис. 2.37. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера;
5 – направляющая труба; 6 – приемная камера;

7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 2.38) заключается
в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1 , создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.


Рис. 2.38. Ствол воздушно-пенный (СВП):

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бачка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 2.24.

Таблица 2.24

Показатели Размерность Тип ствола
СВП СВПЭ-2 СВПЭ-4 СВПЭ-8
Производительность по пене м 3 /мин
Рабочее давление перед стволом МПа 0,4–0,6 0,6 0,6 0,6
Расход воды л/с 4,0 7,9 16,0
Расход 4–6 % раствора пенообразователя л/с 5–6
Кратность пены на выходе из ствола 7,0 (не менее) 8,0 (не менее)
Дальность подачи пены м
Соединительная головка ГЦ-70 ГЦ-50 ГЦ-70 ГЦ-80

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности (ГПС).

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 2.25.

Таблица 2.25

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны
и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 2.39): насадка 1 , пакета сеток 2 ,корпуса генератора 3 с направляющим устройством, коллектора 4 и распылителя центробежного 5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в который вмонтированы распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель центробежный 3 имеет шесть окон, расположенных под углом 12°, что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток.

5
4
3
2
1

Рис. 2.39. Генератор пены средней кратности ГПС-600:

1 – насадок; 2 – пакет сеток; 3 – корпус генератора;

4 – коллектор; 5 – распылитель центробежный

На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.


Контрольные вопросы

1. Назначение и классификация пожарных рукавов.

2. Особенности конструкции всасывающих и напорно-всасывающих рукавов. Их функции. Область применения.

3. Классификация пожарных рукавов. Особенности их конструкций.

4. Проанализировать потери напора в напорных рукавах. Определение потери напора в рукавных линиях.

5. Классификация гидравлического оборудования. Его назначение. Устройство.

6. Классификация пожарных стволов. Назначение. Особенности подачи огнетушащих веществ.

7. Изложите особенности конструкции стволов РС-70 и КБ-Р.

8. Назначение стволов лафетных комбинированных. Классификация. Дальность подачи водяных и пенных струй.

9. Изложите различие принципов образования пены при подаче воздушно-пенными стволами СВПЭ и СВП.

10. Устройство генераторов пены средней кратности. Основные показатели их технических характеристик.